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Abstract

A general programming interface for parameter identification for marine ecosystem
models is introduced. A comprehensive solver software for periodic steady-states is im-
plemented that includes a fixed point iteration (spin-up) and a Newton solver. The soft-
ware is based on the Portable, Extensible Toolkit for Scientific Computation (PETSc)5

library and uses transport matrices for efficient off-line simulation in 3-D. In addition to
the usage of PETSc’s parallel data structures and PETSc’s Newton solver, an own load
balancing algorithm is implemented.

A simple verification is carried out using a well investigated biogeochemical model
for phosphate (PO4) and dissolved organic phosphorous (DOP) with 7 parameters.10

The model is coupled via the interface to transport matrices that correspond to a lon-
gitudinal and latitudinal resolution of 2.8125◦ and 15 vertical layers. Initial tests show
that both solvers and the load balancing algorithm work correctly. Further experiments
demonstrate the robustness of the Newton solver with respect to parameter variations.
Moreover, the numerical tests reveal that, with optimal control settings, the Newton15

solver converges at least 6 times faster towards a solution than the spin-up.
However, additional twin experiments reveal differences between both solvers re-

garding a derivative-based black-box optimization. Whereas an optimization run with
spin-up-based model evaluations is capable to identify model parameters of a refer-
ence solution, Newton-based model evaluations result in an inaccurate gradient ap-20

proximation.

1 Introduction

In the field of climate research, simulation of marine ecosystem models is used to in-
vestigate the carbon uptake and storage of the oceans. The aim is to identify those
processes that are involved with the global carbon cycle. This requires a coupled simu-25

lation of ocean circulation and marine biogeochemistry. In this context, marine ecosys-
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tems are understood as extensions of the latter (cf. Fasham, 2003; Sarmiento and
Gruber, 2006). Consequently, we will use both terms synonymously below. However,
whereas the equations and variables of ocean dynamics are well known, descriptions
of biogeochemical or ecological sinks and sources still entail uncertainties concerning
the number of components and parameterizations (cf. Kriest et al., 2010). A wide range5

of marine ecosystem models needs to be validated, i.e. assessed regarding their ability
to reproduce the real world system. This involves a professional discussion of simula-
tion results and, preferably, an estimation of optimal model parameters beforehand (cf.
Fennel et al., 2001; Schartau and Oschlies, 2003).

The computational effort of a fully coupled simulation, i.e. a simultaneous and in-10

terdependent computation of ocean circulation and tracer transport in three spatial di-
mensions, however, is often to high, even at lower resolution, considering optimization
methods that may require hundreds of model evaluations. Moreover, the complexity
increases additionally if annual cycles are investigated, in which one model evaluation
involves a long time integration (the so-called spin-up) until an equilibrium state under15

given forcing is reached (cf. Bernsen et al., 2008).
Individual strategies have been developed to accelerate the computation of periodic

steady-states of biogeochemical models driven by a 3-D ocean circulation (cf. Bryan,
1984; Danabasoglu et al., 1996; Wang, 2001). In this work we combine three of them
in a single software, namely the so-called off-line simulation, the usage of Newton’s20

method for annual cycles and parallelization.
Off-line simulation offers a fundamentally reduced computational cost compared to

an acceptable loss of accuracy. The principle idea is to pre-compute transport data
for passive tracers. Such an approach has been adopted by Khatiwala et al. (2005) to
introduce the so-called Transport Matrix Method (TMM; Khatiwala, 2013). The authors25

make use of matrices to store results from a general circulation model and to apply
them later on to arbitrary variables. This method proved to be sufficiently accurate to
gain first insights into the behavior of biogeochemical models at global basin-scale (cf.
Khatiwala, 2007).
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From the mathematical point of view, an annual cycle is obtained by solving a time
dependent, periodic system of nonlinear partial differential equations. The solution is
a sequence of states and its initial is a fixed point of a mapping that is used to in-
tegrate given variables over a model year. This fixed point is a zero of an equivalent
nonlinear residual as well (cf. Kelley, 2003). In that case, Newton-type methods are5

well known for their superlinear convergence towards a solution. In combination with
a Krylov subspace approach a Jacobian-free scheme can be realized that is based
only on evaluations of one model year (cf. Knoll and Keyes, 2004; Merlis and Khati-
wala, 2008; Bernsen et al., 2008).

However, realistically, simulation of marine ecosystem models in 3-D is still subject to10

high performance computing. A parallel software that employs transport matrices and
targets a multi-core distributed-memory architecture requires appropriate data types
and linear algebra operations. Additionally, a Newton solver and a load balancing al-
gorithm are needed. Except for the latter, an adequate basis for an implementation
is made freely available by the Portable, Extensible Toolkit for Scientific Computation15

library (PETSc; Balay et al., 1997, 2012b), which in turn is based on the Message
Passing Interface standard (MPI; Walker and Dongarra, 1996).

The main objective of our work, though, is to stay focused on a general coupling for
biogeochemical models and its embedment into an optimization context. Thus, we de-
fine a general programming interface that permits any number of tracers, parameters20

as well as boundary and domain data. We implement a comprehensive, transport ma-
trix based solver software around the method call and map its arguments onto a flexible
option system of the final executable. Moreover, for purposes of usability we provide
an install script for the toolkit and all the material we used to perform the presented
numerical experiments. This includes data preparation, result parsing and visualization25

scripts.
The remainder of this paper is organized as follows. In Sects. 2–4 we describe the

marine ecosystem dynamics, shortly recapitulate the transport matrix approach and
define the biogeochemical model interface. In Sects. 5–7 we discuss periodic solutions,
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go into details of the implementation and present results. Finally, Sect. 8 concludes our
work and Sect. 9 describes how to obtain the source code.

2 Marine ecosystem dynamics

We consider the following off-line tracer transport model, which is described by a sys-
tem of nonlinear parabolic differential equations defined on the unit time interval5

I = [0,1[⊂R, a spatial domain Ω ⊂R3 and its boundary Γ = ∂Ω. Throughout this work,
the time interval is associated with one model year. For n tracers the system generally
reads the text

∂yi
∂t

= ∇ · (κ∇yi )−∇ · (v yi )+qi (y,u,b,d ), (1)

where yi is a tracer concentrations with yi : I ×Ω→R and y = (yi )
n
i=1 is a vector of all10

tracers. Here, we neglect the additional dependency on the time and space coordinates
(t,x) in the notation for brevity.

The transport of tracers in marine waters is depicted by a diffusion and an advection
term. The diffusion mixing coefficient κ : I ×Ω→R and the advection velocity field v :
I ×Ω→R3 are regarded as given (cf. Sect. 3). Note that both operators effect each15

tracer separately. In contrast, a single component of the biogeochemical model qi may
generally depend on all tracers, i.e.

qi (y,u,b,d ) = qi (y1, . . .,yn,u,b,d ) .

Here, b = (bi )
nb

i=1 with bi : I ×Γs→R is a vector of boundary forcing data like insolation

or wind speed, which is defined on the ocean surface Γs ⊂ Γ. Additionally, d = (di )
nd

i=120

with di : I ×Ω→R is a vector of domain forcing data like salinity or temperature of the
ocean water (cf. Sect. 4). As mentioned in the introduction, the model also includes
parameters that are optionally subject to optimization (cf. Table 2 as an example). They
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are summarized in the vector u ∈Rm and kept temporally as well as spatially constant
during the computation of a model year.

Additionally, homogeneous Neumann boundary conditions on the entire Γ for all
tracers yi are imposed. An initial condition (t0,y0) with t0 ∈ [0,1[ and y0 = (yi (t0,x))ni=1
is provided. Overall, we assume the given forcing data κ,v ,b and d is periodic, i.e.5

κ(t+1,x) = κ(t,x) for example. Accordingly, we solve the model equations by comput-
ing an annual cycle, which is a vector of tracer concentrations with y(t+1,x) = y(t,x)
(cf. Sect. 5).

3 Transport matrices

The idea of transport matrices is based on the fact that diffusion and advection are10

linear mappings at every point in time. Hence, the model equations can be written as

∂yi
∂t

(t) = L(t)yi (t)+qi (t,y(t),u,b(t),d (t)),

where L(t) comprises both and represents a time dependent linear operator. Formally,
its fully discrete equivalent is a sequence of matrices (Lj )

nt
j=1 with Lj = L(tj ). Here, nt

is the number of time steps and tj = t0 + (j −1)∆t denotes a specific point in time with15

∆t = 1/nt. Note that throughout this work an equidistant time step will be used.
However, the matrices that we use here represent the effect of an entire time step.

They are extracted from a sophisticated general circulation model that implements
a combination of an operator splitting scheme and an implicit and explicit time step
approach (cf. Temam, 1979). This requires code knowledge and implies a technical20

effort that is described by Khatiwala et al. (2005) for instance. As a general rule, once
the discretization parameters are chosen, the arrangement of the transport matrices,
the boundary and domain data and the tracer vectors are determined for further usage.

The splitting scheme is reflected by the corresponding implicit and explicit matrices,
respectively. Formally, an implicit transport matrix can be understood as the solution of25
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the implicit time step and an explicit transport matrix as the application of the explicit
time step, i.e.

Aimp,j = (I−∆tLimp,j )
−1

Aexp,j = (I+∆tLexp,j ) .

Here, the transport is split as Lj = Limp,j +Lexp,j and I represents the identity. Through-5

out this work, both matrix types are sparse. The implicit matrix Limp,j comprises verti-
cal diffusion only, i.e. a process within a water column that is computed and inverted
independently of its vicinity. The explicit matrix Lexp,j represents a (local) differential
operator, which naturally has a sparse discrete representation.

Overall, the fully discrete iteration scheme for n tracers results in a block diagonal10

system. The integration of state variables over a model year consists of sparse matrix
vector multiplications and evaluations of the biogeochemical model. For a fixed time
index j it reads

yj+1 = A′imp,j (A
′
exp,j yj +∆tqj (yj ,u,bj ,d j )) (2)

=ϕj (yj ,u,bj ,d j ) ,15

where yj = (yi (tj ))
n
i=1 combines all discrete tracer vectors. Accordingly, A′imp,j and

A′exp,j denote block diagonal matrices with Aimp,j and Aexp,j as their identical blocks,
respectively. The components of the tracer model are depicted by qj with

qj (yj ,u,bj ,d j ) = (qi (tj ,yj ,u,bj ,d j ))
n
i=1 ,

where the discrete boundary respectively domain data is represented by bj =20

(bi (tj ))
nb

i=1 and d j = (d i (tj ))
nd

i=1.
Actually, only 12 implicit and 12 explicit matrices are extracted and stored, when

the TMM data is prepared. They represent monthly averaged ocean circulation, but
provide a sufficient accuracy at minimal storage requirements as shown by Khatiwala
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et al. (2005). The same applies for the given forcing. The matrices as well as the
boundary and domain data are interpolated later on to the current time step during the
computation of a model year (cf. Sect. 6).

4 Biogeochemical model interface

In this context, our main objective is to specify a general coupling between the transport5

that is induced by the ocean circulation and the biogeochemical tracer model. The aim
is to link any model implementation with any number of tracers, parameters as well
as boundary and domain data to the driver software. The coupling must additionally fit
into an optimization context, and it must be compatible with Algorithmic Differentiation
techniques (cf. Sect. 8).10

Generally, we assume that a tracer model is implemented for a single water col-
umn, synonymously called profile in the following. This assumption does not constrain
the interface for the future and, it actually simplifies the current software implemen-
tation. Moreover, it reflects the fact that the most important non-local biogeochemical
processes happen within a water column (cf. Evans and Garçon, 1997).15

Thus, throughout this work, each discrete tracer vector is a collection of profiles.
It can be understood as a sparse representation of a land-sea cuboid including only
wet grid boxes. The geometry information is provided as a 2-D land-sea mask with
additional designation of the number of vertical layers (cf. Fig. 1). Hence, a vector
length ny is a sum of non-equidistant profiles, i.e.20

ny =
np∑
k=1

ny ,k ,

where np is the number of profiles and (ny ,k)
np

k=1 is a set of profile depths.
The evaluation of the whole n tracer model for a fixed time index j consist then of

separate model evaluations for each profile. For a fixed profile index k with a depth of
4408
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ny ,k we compute

∆t
(
qi

(
tj , (yi )

n
i=1,u, (bi )

nb

i=1, (d i )
nd

i=1

))n
i=1

. (3)

Here, (yi )
n
i=1 is an input array of n profiles, u a vector of m parameters, (bi )

nb

i=1 a vector

of nb boundary data values and (d i )
nd

i=1 an input array of nd domain data profiles. Both
inputs are regarded as already interpolated. The result is stored in the the output array5

(qi )
n
i=1 that consist of n profiles as well. Formally, the tracer model is scaled with the

(ocean) time step from the outside. However, we integrate ∆t into the interface as
a concession to the actual practice, where the time step is often refined within the
tracer model implementation (cf. Kriest et al., 2010). Consequently, the responsibility
to scale the result before returning it back to the transport driver software rests with the10

model implementer.
Listing 1 shows a realization of the biogeochemical model interface in Fortran 95

called metos3dbgc. The arguments are grouped by their data type. The list begins
with variables of type integer, i.e. n, ny ,k ,m, nb and nd. They are followed by real*8

(double precision) arguments, i.e. ∆t, q, tj , y, u, b and d . We neglected the profile15

index k and the time index j in the notation for clarity. Moreover, we use dt as a textual
representation of ∆t.

Additionally, a model initialization and finalization interface is specified. The former
is denoted metos3dbgcinit and the latter metos3dbgcfinal. These routines are
called at the beginning of a model year, i.e. at t0, and after the last step of the an-20

nual iteration, respectively. Both have the same argument list as metos3dbgc and
are not shown here. All three routine names are arbitrary and can be changed using
pre-processor variables that are defined within the Makefile.
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5 Periodic solution

With those two building blocks, a model evaluation for a given parameter set u ∈Rm is
a calculation of an annual periodic state that solves Eq. (1) with y(t+1) = y(t) for every
t ∈ [0,1[. This continuous solution translates after a spacial and temporal discretization
to a sequence of states (yj )

nt
j=1 with5

φ(y1,u) = y1, (4)

where φ =ϕnt ◦ . . .◦ϕ1 is the mapping that integrates a given tracer concentration over
a model year (cf. Eq. 2). Hence, the initial state of the discrete solution that we seek is
a fixed point of φ.

Generally, we permit the integration to start at any t0 ∈ [0,1[. Independently of this10

choice, by definition the initial state is always depicted by y1. Howsoever, we omit the
time index in the following for clarity.

5.1 Spin-up

In this context, assuming that φ is a contraction, a spin-up is a fixed point iteration
(Plato, 2003, pp. 109). It consist of the recurrent application of φ on the result of the15

previous iteration step, i.e.

yl+1 =φ(yl ,u),

where l = 1, . . .,nl is the model year index, nl is the overall number of model years
and yl denotes the initial state of the l th model year. It can be understood as the
propagation of the overall initial state over (typically) thousands of model years in order20

to reach an equilibrium (cf. Bernsen et al., 2008).

5.2 Inexact Jacobian-free Newton–Krylov

On the other hand, Eq. (4) can be transformed into a zero finding problem on which
Newton’s method can be applied (cf. Kelley, 2003; Bernsen et al., 2008). For this pur-
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pose, we define F (y,u) = y−φ(y,u) and solve F (y,u) = 0 for a given parameter set u.
However, we omit the dependency of F on u in the following for clarity.

Using a Newton iteration in every step we solve

F ′(yk)sk = −F (yk) , (5)

where k = 1, . . . is the Newton step index, F ′ denotes the Jacobian of F and sk is the5

state update to find that is used to form the next iterate, i.e. yk+1 = yk +sk . For this,
the right-hand-side of Eq. (5) is computed first, which basically corresponds to one
application of φ.

To solve the system of linear equations for a fixed k we use a Krylov subspace
approach. It is a nested iteration to construct successive approximations that converge10

to the sought solution. These solvers require only the result of a matrix-vector product to
proceed. Here, we choose the generalized minimal residual method (Saad and Schultz,
1986, GMRES), which is implemented as part of the linear solver suite in PETSc. In
this context, the notion Jacobian-free refers to the fact that during the solving process
the result of the Jacobian-vector product is approximated by a forward finite difference15

quotient, i.e.

F ′(yk)sk,l ≈
F (yk +δ sk,l )− F (yk)

δ
,

where l = 1, . . . is the Krylov sub-index. The scaling parameter δ ∈R is chosen auto-
matically as a function of y and s (cf. Balay et al., 2012a).

Within the inner loop the initial guess for the state update is always a vector of zeros,20

i.e. sk,1 = 0 for every k. Thus, no computation is required for the first step and the
initial Krylov residual is exactly the Newton residual, i.e. F ′(yk)sk,1 + F (yk) = F (yk).
Consequently, we overlay both points in a convergence plot. However, for the following
iterations F must be evaluated at yk +δsk,l to approximate F ′(yk)sk,l . Here, again
every evaluation is associated with one model year.25
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5.3 Convergence

Assuming there exist a unique solution of Eq. (1), it can be found in a subspace of the
Cartesian product of L2 spaces over the time and space domain, i.e. L2(I ×Ω)n (cf.
Evans, 1998, pp. 500). This space is equipped with the following (squared) norm

‖y‖2
L2(I×Ω)n

=
n∑
i=1

∫
I

∫
Ω

|yi (t,x)|2 dxdt .5

We denote the discrete counterpart by

‖y‖2
2,I×Ω =

n∑
i=1

nt∑
j=1

∆t
ny∑
k=1

wk |yi ,j ,k |2 ,

where wk is the relative volume of the partial grid box Ωk , assuming the domain is
scaled to a unit cube. Here, we use ∆t instead of ∆tj due to the equidistant temporal
resolution. In general, we omit the designation of the Cartesian product by the n in the10

norm notation for clarity.
However, the usage of the above norm involves the whole trajectory of all tracers and

is thus expensive to compute. We mostly test for convergence by using an unweighted
norm that only compares the initial states of consecutive model years. For a fixed time
index j we then denote15

‖y‖22 =
n∑
i=1

ny∑
k=1

|yi ,j ,k |2 .

5.3.1 Spin-up

The difference between consecutive iterates is determined for a model year index l =
2, . . .,nl as

εl = ‖yl −yl−1‖2 .20
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The spin-up solver is easy to operate. The user can either set a tolerance ε that
should be reached or a number of model years nl that the initial state should be spun-
up for. If both are set, the iteration stops at what is reached first.

5.3.2 Newton–Krylov

The Newton–Krylov solver is a more sophisticated approach than a spin-up. Various5

settings can be used to control the solving process. This is shown in more detail in
Sect. 7.5, where results of numerical experiments are presented for a simple biogeo-
chemical model.

In a convergence plot, every Newton step k is associated with the evaluation of one
model year and the corresponding value is the norm of this so-called Newton residual,10

i.e. ‖F (yk)‖2. For the inner Krylov index l , every approximation of the Jacobian-vector
product is again associated with one model year and the depicted value in a plot is the
norm of the Krylov residual, i.e. ‖F ′(yk)sk,l + F (yk)‖2.

The number of inner iterations per Newton step depends on the specified tolerance
for the Krylov residual. For this, we use an already implemented convergence control15

based on a technique described by Eisenstat and Walker (1996). The inner tolerance
is set in relation to the Newton residual and the solver proceeds until

‖F ′(yk)sk,l + F (yk)‖2 ≤ ηk ‖F (yk)‖2

holds. This inexact approach avoids the so-called over-solving and decreases, espe-
cially in the beginning, the number of evaluations of F . The scaling factor ηk is deter-20

mined from former Newton residuals as

ηk = γ

(
‖F (yk)‖2
‖F (yk−1)‖2

)α

(6)

with values set by default to η1 = 0.3, γ = 1 and α = (1+
√

5)/2.
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6 Software implementation

The toolkit is divided into four repositories, namely metos3d, model, data and
simpack. The first comprises the installation scripts, the second the biogeochemi-
cal model source codes and the third all the data preparation scripts as well as the
data. The latter consist of the transport driver, which is implemented in C and based5

upon the PETSc library.
The simulation context is represented by a data type called metos3d that gathers all

variables. Regarding the biogeochemical models, C, C++ and Fortran implementations
are accepted (cf. Sect. 7.1.1). Overall, whereas we used 1-indexed arrays within the
text for convenience, within the source code C arrays are 0-indexed and Fortran arrays10

are 1-indexed. Moreover, all data files are in PETSc format.

6.1 Layers

The implementation is structured in layers according to which the source files are
named. The bottom layer is the debug layer which implements output formatting and
timing routines. Above resides the utilization layer. It provides basic routines for reading15

in options, allocating memory as well as reading data from and writing data to disc. The
option system and the individual options are described in the documentation that is lo-
cated in a subdirectory of the git repository of the simulation package. Moreover, the
utilization layer comprises routines to arrange profiles within a vector (cf. Sect. 6.4) and
to compute interpolation factors and indices (cf. Sect. 6.3) as well. The 2-D land-sea20

mask is read in by the geometry layer and the profiles are balanced by the work load
layer (cf. Sect. 6.2).

The next both layers are the building blocks of the simulation. The bgc model layer
initializes tracer vectors, parameters as well as boundary and domain data. It is respon-
sible for the rearrangement of the profiles, the interpolation of the forcing data and the25

evaluation of the biogeochemical model using the interface (cf. Sect. 6.4). The trans-
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port layer is responsible for reading in the transport matrices, their interpolation to the
current time step and their application to the tracer vectors (cf. Sect. 6.5).

The next layer is the time stepping layer, where the main integration routine φ is
located (cf. Algorithm 3). The Newton residual F is implemented here as well. On top
resides the solver layer, which consist of the spin-up implementation and the call to the5

Newton–Krylov solver provided by PETSc. Additionally, all layer initialization respec-
tively finalization routines are combined as one call within the init source file.

6.2 Load balancing

Once the geometry information is read in, the profiles have to be distributed among the
available processes. However, a tracer vector is a collection of non equidistant profiles10

and the biogeochemical models that we couple to the transport matrices operate on
whole water columns. Thus, a profile can not be split when the work load is distributed.

For this case, no suitable load balancing algorithm is provided by the PETSc library.
Here, we use an approach that is inspired by the idea of space filling curves presented
by Zumbusch (1999). For every profile, we compute its mid in relation to the vector15

length and scale this ratio by the number of processes. We round this figure down to
an integer and use the result as the index of the process the profile belongs to. This
information is sufficient to consecutively assign the profiles to the processes later on.

The calculation for 0-indexed arrays is depicted by Algorithm 1. Its theoretical and
actual performance is discussed in Sect. 7.4 where we show results of speedup tests20

that we performed on two different hardware architectures.

6.3 Interpolation

The transport matrices as well as the boundary and domain data vectors are provided
as sets of files. Although, most of the data we use in this work represents a monthly
mean, the number of files in each set is arbitrary.25

4415

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/4401/2015/gmdd-8-4401-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/4401/2015/gmdd-8-4401-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 4401–4451, 2015

Metos3D

J. Piwonski and T. Slawig

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Regarding the transport, we have (Aimp,j )
nimp

j=1 and (Aexp,j )
nexp

j=1 , where nimp and nexp

specify the number of implicit and explicit matrix files, respectively. Note, we will not
assemble both (block diagonal) system matrices during the simulation to avoid redun-
dant storing. Instead, we use the provided matrices to build only a block for each matrix
type. The transport is then applied as a loop over separate tracer vectors as explained5

in Sect. 6.5.
Concerning the boundary and domain forcing, we denote the data files by

((bi ,j )
nb,i

j=1)
nb

i=1 and ((d i ,j )
nd,i

j=1)
nd

i=1. Here, nb is the number of distinct boundary data sets
and nb,i is the number of data files provided for the i th set. Accordingly, nd denotes the
number of domain data sets and nd,i is the number of data files of a particular set.10

However, the time step count per model year is generally much higher than the num-
ber of available data files. Thus, the matrices and vectors are linearly interpolated to
the current time step during the iteration. The files of a specific data set are interpreted
as averages of the time intervals they represent. Consenquently, we interpolate in be-
tween the associated centers of these intervals. The appropriate weights and indices15

are computed on the fly using Algorithm 2. Both building blocks of the simulation, i.e.
the biogeochemical model and the transport step access the interpolation routine in
every time step tj to form a linear combination of the user provided data.

6.4 Biogeochemical model step

During a simulation the BGCStep routine in Algorithm 4 is responsible for the evaluation20

of the biogeochemical model. For this, the boundary and the domain data must be
interpolated first. Here, for every index i and the corresponding boundary data set
(bi ,j )

nb,i

j=1 we compute the appropriate weights α, β as well as indices jα, jβ and form
the linear combination as

bi = αbi ,jα +βbi ,jβ .25
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The same applies for the domain data, i.e. for every domain data set (d i ,j )
nd,i

j=1 we com-
pute

d i = αd i ,jα +βd i ,jβ .

Technically, we use the PETSc routines VecCopy, VecScale and VecAXPY for this
purpose, which is analogous to the interpolation of the transport matrices in Sect. 6.5.5

Next, we rearrange the forcing data and the tracer vectors. This is necessary since
the combination of transport matrices and water column models results in two different
data alignments. For the application of a matrix to a tracer vector, all profiles of a tracer
are kept one behind the other. In contrast, to evaluate the tracer model the same profile
of each tracer must be kept in a contiguous piece of memory. Accordingly, this has an10

effect on the forcing data as well. The routines for rearrangement are provided within
the softwares utilization layer.

Concerning the tracers, we need to copy from n separate vectors to one (block diag-
onal) vector, where the profiles are grouped by their index, i.e.[
(y1,k)

np

k=1 . . . (yn,k)
np

k=1

]
←→

(
(yi ,k)ni=1

)np

k=1,15

where yi ,k denotes the kth profile of the i th tracer. Moreover, after the evaluation of
the biogeochemical model we reverse the alignment for the transport step. The same
situation occurs regarding the domain data. Again, we group the domain data profiles
by their profile index k, i.e.[
(d1,k)

np

k=1 . . . (dnd,k)
np

k=1

]
−→
(

(d i ,k)
nd

i=1

)np

k=1
20

where d i ,k denotes a domain data profile. However, no reverse copying is required
here.

The boundary data is a slightly different case. Here, we align boundary values, at
which each is associated with the surface of a water column, i.e.[
(b1,k)

np

k=1 . . . (bnb,k)
np

k=1

]
−→
(

(bi ,k)
nb

i=1

)np

k=1
25
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where bi ,k denotes a single boundary data value in contrast to a whole profile. Analo-
gously to the domain data, no reverse copying is required in this case.

Subsequent, we loop over all profiles and evaluate the biogeochemical model for
every water column using the interface depicted in Listing 1. Finally, as already men-
tioned, we prepare the output for the transport step.5

6.5 Transport step

The application of the transport matrices to tracer variables is the second building
block of the simulation. The individual steps are combined in the TransportStep

routine, which is applicable to both matrix types as shown in Algorithm 4. On entry,
we interpolate the user provided matrices to the current point in time tj first, i.e. we10

assemble

A = αAjα +βAjβ

with the appropriate α, β and jα, jβ. Analogously to the interpolation of vectors we use
the matrix variants MatCopy, MatScale and MatAXPY for this purpose. The technical
details hereof has been already discussed at full length in Siewertsen et al. (2013).15

Subsequent, we apply MatMult to every tracer of the input variable y in.
In contrast to the interpolation of vectors, and generally to all vector operations, each

of the matrix operations has a significant impact on the computational time. In Sect. 7.3
we present results from profiling experiments that show detailed information about the
time usage of each operation.20

7 Results

In this section, we present results from numerical experiments to verify the software.
At first, we use the introduced interface to couple the transport matrix driver with a well
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investigated biogeochemical model implementation. We compare the simulation re-
sults with others and inspect the convergence behavior of both solvers included. Sub-
sequently, we perform speed-up tests to analyze the implemented load distribution.
A profiling of the main parts of the algorithm complements the initial verification.

We continue by investigating the convergence control settings of the Newton–Krylov5

solver and examine the solver’s behavior within parameter bounds. We finally present
results from optimization runs against a reference solution.

7.1 Setup

We assume the PETSc environment variables are set, the toolkit is installed and the
metos3d script is made available as a shell command.10

7.1.1 Model

In order to test our interface, we decide to couple an original implementation of a bio-
geochemical model that is used for the MIT General Circulation Model (cf. Marshall
et al., 1997, MITgcm) biogeochemistry tutorial and described in detail in Dutkiewicz
et al. (2005). It has been widely investigated, which gives us the possibility to easily15

compare our results to those published by others. Moreover, we assume the model is
correctly implemented. In particular, several experiments performed in (Kriest et al.,
2010) and (Kriest et al., 2012) are based on its (slightly modified) source code.

The model comprises five biogeochemical variables, namely dissolved inorganic car-
bon (DIC), alkalinity (ALK), phosphate (PO4), dissolved organic phosphorous (DOP)20

and oxygen (O2). In fact, we will use just PO4 and DOP here since the concentrations
of DIC, ALK and O2 are derived from those two. The model introduces seven parame-
ters (cf. Table 2). We will denote it as the MITgcm-PO4-DOP model.

Generally, for every model implementation that is coupled to the transport driver
via the interface a new executable must be compiled. Here, we follow the introduced25

convention for the directory structure to fit seamlessly into the automatic compile
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scheme. Within the model directory of the model repository we create a folder named
MITgcm-PO4-DOP. We implement a model wrapper for the original source code and
store it in a file named model.F within that folder. Overall, while the file suffix implies
a pre-processed Fortran fixed format, every programming language that is supported
by the PETSc library will be accepted.5

Finally, to compile all sources we invoke

$ > metos3d simpack MITgcm-PO4-DOP

and such create an executable named10

metos3d-simpack-MITgcm-PO4-DOP.exe

that we use for all the following experiments. Specific settings will be provided
via option files.15

7.1.2 Data

All matrices and forcing data we use in this work are based on the example material
that is freely available at (Khatiwala, 2013). This material originates from MITgcm sim-
ulations and requires post-processing. We provide the preparation scripts as well as
the prepared data within the data repository.20

The surface grid of the used domain has a longitudinal and latitudinal resolution
of 2.8125◦, which results in 128×64 grid points (cf. Fig. 1). Note that the Arctic has
been filled in. The depth is divided into 15 vertical layers that are depicted in Table 1.
This geometry translates to a (single) tracer vector length of ny = 52749 and the cor-
responding np = 4448 profiles. Moreover, the total volume of the ocean is specified25

as V ≈ 1.174×1018 m3, whereas the minimal and maximal volume of a grid box is
Vmin ≈ 8.357×1011 m3 and Vmax ≈ 6.744×1013 m3, respectively. The temporal resolu-
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tion is at ∆t = 1/2880, which is equivalent to an (ocean) time step of 3 h assuming that
a year consists of 360 days.

The used MITgcm-PO4-DOP model determines the number of tracers to n = 2 and
the parameter count to m = 7 (cf. Table 2). The components of the combined tracer
vector are yPO4

and accordingly y DOP, i.e. y = (yPO4
,y DOP). The photosynthetically5

available short wave radiation is deduced from the insolation, which is computed on the
fly using the formula of Paltridge and Platt (1976). Here, for the topmost layer latitude
and ice cover data is required, i.e. nb = 2. For the former we use a single latitude file,
i.e. nb,1 = 1, and for the latter twelve ice cover files, nb,2 = 12.

Additionally, the depths and heights of the vertical layers are required, i.e. nd = 2 do-10

main data sets. Each consist of only one file, i.e. nd,1 = 1 and nd,2 = 1. The information
is used to compute the attenuation of light by water, to determine the fluxes of partic-
ulate organic phosphorus and to approximate a derivative with respect to depth. Note
that the order in which the data sets are provided is important and must correspond
to the order used within the model implementation. For more information, an algorithm15

of a very similar model can be found in Siewertsen et al. (2013). Finally, as previously
mentioned, twelve implicit transport matrices, i.e. nimp = 12, and twelve explicit trans-
port matrices, i.e. nexp = 12 are provided.

We always start a simulation at t0 = 0 and perform nt = 2880 iterations per
model year. We initialize the variables with global mean concentrations of y0,PO4

=20

2.17mmolPm−3 and y 0, DOP = 0.0001mmolPm−3, respectively.

7.2 Solver

We begin our verification by computing a reference solution for the parameter set ud
that is depicted in Table 2. Both solvers are started with the same initial configuration.

Regarding the spin-up, we set no tolerance and let the solver iterate for 10 000 model25

years, despite the fact that usually 3000 are regarded as sufficient (cf. Bernsen et al.,
2008). The Newton approach is set to a line search variant and the Krylov subspace
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solver to GMRES. All other settings are left to default, in particular the overall absolute
tolerance is at 10−8 and the maximum number of inner iterations is 10 000.

Figure 2 shows the convergence towards a periodic steady state. Both solver obvi-
ously converge towards the same solution. The difference is generally measured us-
ing the unweighted norm of initial states consecutive model years. Additionally, every5

100 years we computed the weighted norm between whole trajectories for comparison.
However, we observe that the Newton–Krylov solver does not reach the default tol-

erance and iterates unnecessarily for 10 000 model years within the last Newton step.
Thus, we limit the inner Krylov iterations to 200 in the following experiments. Moreover,
we change the convergence settings to get rid of the over-solving that we observe at10

the beginning. Referring to this, more detailed experiments are presented in Sect. 7.5.
Nevertheless, the results resemble the observational data taken from the World

Ocean Database (Boyer et al., 2013), which were mapped onto a 2.8125◦ grid and
interpolated in space and time for comparison. Figure 3 shows the concentration of
phosphate within the first layer. Here, the data is shifted to show Greenwich (0◦) at the15

center. Moreover, Fig. 4 depicts slices through the Pacific, Atlantic and Indian. Conse-
quently, we assume the coupling of the biogeochemical model to the transport driver
was successful.

7.3 Profiling

Confident that the compiled executable produces correct results, we investigate some20

technical aspects of the implementation more closely. First of all, we are interested in
the distribution of the computational time among the main operations of a model year.

For this, we perform a profiled sequential run at which we iterate for 10 model years.
The analysis of the profiling results is shown in Fig. 5. We observe that the biogeo-
chemical model takes up 40% of the computational time. The interpolation of matrices25

(MatCopy, MatScale and MatAXPY) amounts to approximately a third. The matrix
vector multiplication (MatMult) takes up a quarter of the computations and all other
operations amount to 1.5%.
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This profiling capability was also used as the software was ported by Siewertsen
et al. (cf. 2013) to an NVIDIA graphics processing unit (GPU). The authors investigated
the impact of the accelerator’s hardware on the simulation of biogeochemical models.
The work comprises a detailed discussion on peak performance as well as memory
bandwidth and includes a counting of floating point operations.5

7.4 Speed-up

Regarding the solver experiment, we have chosen the number of processes as such
that the computations become feasible. In this section, we investigate the performance
of the load balancing algorithm in detail.

We run tests on two different hardware platforms. The first hardware is an (older)10

AMDr Barcelona architecture that consists of Opteronr 2352 CPUs with 4 cores
running at 2.1 GHz. The second is an Intelr Sandy Bridge EP architecture with In-
tel Xeonr E5-2670 CPUs that consist of 8 cores running at 2.6 GHz. Both are inte-
grated into a computer cluster located at the computing center of the university of Kiel.

On each hardware, we perform 10 tests with respect to a specific number of pro-15

cesses. Regarding the AMD Barcelona hardware we use 1 to 184 cores, on the In-
tel Sandy Bridge EP hardware each simulation run is performed using 1 to 256 cores.
Each test consists of running simulations of three model years, at which each year
is timed separately. For the calculation of the speed-up and efficiency results we use
the smallest measured time of these 30 tests, i.e. the best performance per number of20

processes.
All timings are related to a sequential run. The absolute sequential minimum timings

are t1 = 646.592s (AMD) and t1 = 153.038s (Intel), respectively. For a set of measured
computational times (ti )

N
i=1 with N = 184 or N = 256 we calculate the speedup as si =

t1/ti and the efficiency as ei = 100 · si/i .25

Additionally, referring to the implemented load distribution, we compute the best pos-
sible ratio between a sequential and a parallel run. For all number of processes, i.e.
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i = 1, . . .,260, we compute the load distribution using Algorithm 2 and retrieve the max-
imum (local) length ni ,max. For the speed-up we divide the vector length by this value,
i.e. si = ny/ni ,max, and for the efficiency we again calculate ei = 100 · si/i .

Figure 6 depicts the ideal, best possible and actual speedup respectively efficiency.
Regarding the implemented load distribution a good performance over the whole range5

of processes can be observed. However, we recognize that on the AMD hardware
a parallel run never reaches the theoretically possible speed-up. The best performance
is achieved between 90 and 100 processes, at which the speed-up is at 70 and the effi-
ciency slightly over 70%. Thereafter the speed-up remains the same but the efficiency
decreases.10

In contrast, a parallel run on the Intel hardware reaches between 100 and 140 pro-
cesses almost best performance. In this range the efficiency is about 95% and the
speed-up nearly corresponds to the number of processes. After that, the efficiency
drops constantly as observed for the AMD architecture. Indeed, the speed-up still rises
to slightly over 160 but requires at least 200 processes to reach this factor.15

Interestingly, there is a significant drop in performance at the beginning on both ar-
chitectures. In particular, each hardware shows a different pattern. The possible im-
plications are shortly discussed in Sect. 8. However, since the results give us a good
orientation anyway this effect is not investigated further. Overall, as already indicated
by the sequential runs, the Intel hardware is the obvious choice for subsequent experi-20

ments.

7.5 Convergence control

After a basic verification and a review of technical aspects of our implementation, we
investigate the settings to control the convergence of the Newton–Krylov solver. Our
intention is to eliminate the over-solving that we observe during the first 200 iterations25

in Fig. 2. This effect occurs, if the accuracy of the inner solver is significantly higher than
the resulting Newton residual (cf. Eisenstat and Walker, 1996). The relation between
those two is controlled by the γ and the α parameter depicted in Eq. (6).
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Hence, we compute the reference solution from Sect. 7.2 with different values of γ
and α to investigate their influence on the convergence behavior. We set the overall
tolerance to the measured difference of consecutive states after 3000 model years of
spin-up, i.e. approximately 9.0×10−4. We let the value of γ vary from 0.5 to 1.0 in steps
of 0.1 and α is chosen from 1.1 to 1.6 in steps of 0.1 as well. This is a total of 36 model5

evaluations.
Figure 7 depicts the required model years and Newton steps as a function of γ and

α. We observe that the overall number of years decreases, as both parameters tend
to 1.0 and 1.1, respectively. In contrast, the number of Newton steps increases, i.e. the
Newton residual is computed more often and the inner steps become shorter.10

Consequently, since the computation of a residual is negligible in comparison to
the simulation of a model year, we focus on decreasing the overall number of model
years. A detailed inspection of the results reveals that for γ = 1.0 and α = 1.2 the solver
reaches the set tolerance after approximately 450 model years, which is significantly
less than 600 if using the default settings. Thus, we use these values for the next15

experiments.

7.6 Parameter samples

As mentioned in the introduction, one of the strategies to accelerate the computation
of periodic steady-states was to utilize a Newton approach. After an initial verification,
we are confident that the Newton–Krylov solver is working correctly and, with optimal20

settings, at least 6 times faster than the spin-up (fixed point iteration).
However, until now we solved the given model equations for the reference parameter

set ud only. During an optimization a solution must be computed for various parameter
sets. Thus, we perform the next experiments in order to study the solver’s behavior
with regard to other model parameters. For this purpose, using the MATLABr routine25

lhsdesign, we create 100 Latin Hypercube (cf. McKay et al., 1979) samples within
the bounds that are depicted in Table 2. We set the overall tolerance again to a value
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that is comparable with 3000 spin-up iterations and let the Newton solver compute
a solution for each parameter sample

Figure 8 shows histograms of the total number of model years respectively Newton
steps required to solve the model equations. We observe that most computations con-
verge in between 400 to 550 model years and require 10 to 30 Newton steps. Interest-5

ingly, regarding the latter there is a high peak around 15 and a smaller peak around 12.
Moreover, we recognize some outliers in both graphs. Nevertheless, all started model
evaluation converged towards a solution within the desired tolerance. Thus prepared,
we carry out the last experiment.

7.7 Twin experiment10

Finally, after a verification of the spin-up and the Newton approach, we perform a twin
experiment with each solver. We separately compute a reference solution with specific
settings and start an optimization run (using the same settings) against it. Regarding
the spin-up we let the solver iterate for 3000 model years and set no tolerance once
again. The Newton solver is set up as described in Sect. 7.5.15

We consider the following optimization problem:

minu∈UJ(u) ,

where

J(u) =
1
2
||y(u)−yd ||22,I×Ω

and the admissible set is defined as20

U = {u ∈Rm : bl ≤ u ≤ bu} .

Here, yd = y(ud ) is the reference solution computed before and bl respectively bu are
the lower and upper bounds we impose during the optimization. The norm is computed
using the whole trajectory and both optimization runs are started with u0 (cf. Table 2).
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To solve the problem we use MATLAB’s fmincon routine for constraint nonlinear
optimization, where we set the algorithm to active-set (cf. Nocedal and Wright, 2000,
pp. 308). It is a quasi-Newton approach, at which the inverse of the Hessian is approx-
imated using Broyden’s method (cf. Dennis and Schnabel, 1996, pp. 169). In both twin
experiments we approximate the gradients with forward finite differences and a step5

size that equals the square root of the machine precision. Regarding the Newton solver,
one additional experiment is carried out with a relative step size of 10−4.

Figure 9 shows the result of the optimization run(s) using the spin-up solver. Due to
the time limitation of the used batch system, we had to restart the first run, which has
been stopped after 200 h. Thereby, the approximation information about the Hessian10

was lost, which explains the different path that is taken by the second run. However,
we observe a convergence of the parameters towards their reference values. At the
last optimization step they are u = (0.499, 2.016, 0.670, 0.502, 30.461, 0.019, 0.858).
Here, the values are round off to three decimal places.

Figure 10 depicts the attempt to minimize the cost function using the Newton solver15

for model evaluation. Both optimization runs finish because the predicted change in the
objective function is less than 10−6, which is the default value of the function tolerance.
They need about 430 respectively 470 model evaluations, which corresponds to slightly
more than 210 000 overall model years each. However, both attempts obviously fail to
identify the reference parameter set. Here, based on the two experiments, a detailed20

analysis is hardly possible. They provide only first clues (cf. Sect. 8).

8 Conclusions

In order to fundamentally tackle the problem of parameter identification for marine
ecosystem models in 3-D, we introduced a general biogeochemical programming inter-
face that fits into the optimization context. Moreover, we implemented a comprehensive25

parallel solver software for periodic steady-states that uses the interface to couple ma-
rine ecosystem models to a transport matrix driver.
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We validated the new implementation using a simple biogeochemical model know-
ing full well that the model is too simple for the intended purpose. Referring to this,
preliminary experiments with more complex descriptions of the marine ecosystem, as
the O2-NPZD-DOP model used by Kriest et al. (2010) for instance, did not provide new
insights regarding a basic verification. On the contrary, they further complicated the5

investigation and were thus not described here.
We primary focused on the technical aspects of the software, the employed solvers

and, finally, the usage of each solver for parameter identification. Here, we have seen
how useful the inherited profiling capability can be to access the computational com-
plexity of a new model implementation. Moreover, the performed speed-up tests re-10

vealed that a parallel hardware needs to be carefully inspected before it is used for
numerical experiments. For instance, using the Intel architecture, it would unfavorable
to split 128 available processes into 8 separate experiments. Despite a perfectly work-
ing load balancing this would result in only 50% of the possible performance.

Furthermore, regarding the Newton solver, model evaluations with different param-15

eter samples and control settings confirmed what has already been stated by Kelley
(2003) for instance. The PETSc library provides a flexible and robust solver implemen-
tation that, in our case, solves the given nonlinear equations at least 6 times faster than
the fixed point iteration.

However, concerning the twin experiments, we must recognize that both solving ap-20

proaches have their own specific difficulties with regard to a derivative based black-box
optimization. Note that the chosen optimization approach was somehow ”natural”. This
work focused on the computation of periodic steady-states, i.e. mere model evalua-
tions, and we used a model that is smooth enough, i.e. for which derivative information
is available. The intention was to avoid a whole survey of optimization methods includ-25

ing a variety of derivative-free approaches (cf. Rios and Sahinidis, 2013).
Howsoever, although a finite differences approximation of gradients works fine with

the fixed point iteration, it is computationally still too complex. Overall, more than
951 000 model years were simulated during the spin-up twin experiment. The approach
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may be easy to realize, but it clearly consumes to many computational resources. At
least, it shows that the model parameters can be recognized.

Here, the obvious idea would be to take coarser time steps as implied by (Khatiwala,
2007). However, new transport matrices need to constructed for this purpose. Indeed,
the appropriate scripts are provided in the data repository of Metos3D, but once again,5

not to further complicate a basic verification the approach was not discussed here.
Moreover, due to the fact that a coarser time step may lead to inaccurate results,

a Newton solver was integrated into the software. And, as it turned out, a model eval-
uation using a Newton approach is much faster. However, the employed optimizer ap-
parently struggles with the approximation of gradients by finite differences using this10

solving approach. A closer inspection of the results reveals that the computed gradi-
ents differ from those using a fixed point iteration. Here, a separate investigation is
necessary.

Furthermore, usually the employment of pre-conditioners must be taken into ac-
count, as has already been discussed by Khatiwala (2008). Indeed, PETSc offers sev-15

eral own pre-conditioner implementations or at least the possibility to interact with the
inner solver at the appropriate location. However, none of the included PETSc pre-
conditioner nor the presented approach by Khatiwala (2008) is matrix-free. Thus, once
again, in order to not further complicate the basic verification this has not been consid-
ered here.20

Finally, we would like to note that introduced programming interface showed the ex-
pected flexibility with regard to a model coupling on source code level. Though, we re-
alized a 1-D (water column) interface only, this is no restriction for future development.
Moreover, preliminary experiments showed that, regarding Algorithmic Differentation,
and an interface for a forward and/or reverse mode, can easily be derived.25
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9 Code availability

Name of software: Metos3D (Simulation Package v0.2)
Developer: Jaroslaw Piwonski
Year first available: 2012
Software required: PETSc 3.35

Program language: C, C++, Fortran
Size of installation: 1.6 GB
Availability and Cost: free software, GPLv3
Software homepage: https://metos3d.github.com/metos3d

10

The toolkit is maintained using the distributed revision control system git. All source
codes are available at GitHub (https://github.com). The current version has been
tagged as v0.2. All experiments presented in this work were carried out using this
version. The associated material is stored in the verification repository.

To install the software, the user should visit the homepage and follow the instruc-15

tions. Whereas in the future an installation will always reflect the current state of de-
velopment, the user can always invoke git checkout tags/v0.2 in the simpack,
model, data and verification repository, respectively, to retrieve the version used
in this work.

Acknowledgements. The authors would like to thank S. Khatiwala for providing support on the20

transport matrices and for providing the whole TMM material freely on the internet. Further-
more, both authors would like to thank I. Kriest and A. Oschlies for many fruitful discussions.
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Table 1. Vertical layers of the numerical model. Units are meters.

Layer Depth of Thickness of
layer bottom layer (∆z)

1 50 50
2 120 70
3 220 100
4 360 140
5 550 190
6 790 240
7 1080 290
8 1420 340
9 1810 390
10 2250 440
11 2740 490
12 3280 540
13 3870 590
14 4510 640
15 5200 690
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Table 2. Parameters implemented in the MITgcm-PO4-DOP model. Specified are the location
within the parameter vector, the symbol used by Dutkiewicz et al. (2005), the description of the
parameter and the value used for the computation of the reference solution (ud ). Shown are
furthermore the lower (bl) and upper (bu) boundaries as well as the initial parameter guess (u0)
used during the twin experiment.

u Symbol Description ud bl u0 bu Unit

u1 κremin DOP remineralization rate 0.5 0.25 0.3 0.75 y−1

u2 α maximum community production 2.0 1.5 5.0 200.0 mmolPm−3 y−1

u3 fDOP fraction of DOP 0.67 0.05 0.4 0.95 1
u4 κP O4

PO4 half saturation 0.5 0.25 0.8 1.5 mmolPm−3

u5 κI light half saturation 30.0 10.0 25.0 50.0 Wm−2

u6 k light attenuation 0.02 0.01 0.04 0.05 m−1

u7 aremin power law remineralization coefficient 0.858 0.7 0.78 1.5 1
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Figure 4. Slices corresponding to Figure 3: the Pacific (153.2815◦ W), the Atlantic (29.53125◦ W) and the Indian (91.40625◦ E). Left:
Simulated tracer concentration. Right: Observational data from the World Ocean Database 2013.

Algorithm 1: Load balancing
Input : vector length: ny , number of profiles: np, profile lengths: (ny,k)

np
k=1, number of processes: N

Output: profiles per process: (np,i)
N
i=1

1 w = 0 ;
2 np,1...N = 0 ;
3 for k = 1, . . . ,np do
4 i= floor(((w+ 0.5 ∗ny,k)/ny) ∗N) ;
5 np,i = np,i + 1 ;
6 w = w+ny,k ;
7 end
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Figure 5. Distribution of the computational time among main operations during the integration of a model year.

Table 1. Vertical layers of the numerical model. Units are meters.

Layer Depth of Thickness of
layer bottom layer (∆z)

1 50 50
2 120 70
3 220 100
4 360 140
5 550 190
6 790 240
7 1080 290
8 1420 340
9 1810 390
10 2250 440
11 2740 490
12 3280 540
13 3870 590
14 4510 640
15 5200 690

Algorithm 2: Interpolation
Input : point in time: t ∈ [0,1[, number of data points: ndata
Output: weights: α,β, indices: jα, jβ

1 w = t ∗ndata + 0.5 ;
2 β = mod(w,1.0) ;
3 jβ = mod(floor(w),ndata) ;
4 α= (1.0−β) ;
5 jα = mod(floor(w) +ndata− 1,ndata) ;
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Figure 7. Number of model years and Newton steps required for the computation of the annual cycle y(ud) as a function of different
convergence control parameters α and γ (cf. Equation (6)).

Algorithm 3: Phi (φ)
Input : initial condition: (t0,y0), time step: ∆t, number of time steps: nt, implicit matrices: Aimp, explicit matrices: Aexp,

parameters: u ∈ Rm, boundary data: b, domain data: d
Output: final state: yout

1 yin = y0 ;
2 for j = 1, . . . ,nt do
3 tj = mod (t0 + (j− 1)∆t,1.0) ;
4 yout = PhiStep(tj ,∆t,Aimp,Aexp,yin,u,b,d) ;
5 yin = yout ;
6 end
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Figure 8. Distribution of number of model years and Newton steps required for the computation of a annual cycle using 100 random
parameter samples (cf. Section 7.6).

Algorithm 4: PhiStep (ϕ)
Input : point in time: tj , time step: ∆t, implicit matrices: Aimp, explicit matrices: Aexp, current state: yin, parameters: u ∈ Rm,

boundary data: b, domain data: d
Output: next state: yout

1 q = BGCStep(tj ,∆t,yin,u,b,d) ;
2 yw = TransportStep(tj ,Aexp,yin) ;
3 yw = yw + q ;
4 yout = TransportStep(tj ,Aimp,yw) ;

Listing 1. Fortran 95 implementation of the coupling interface for biogeochemical models.
subroutine metos3dbgc(n, ny, m, nb, nd, dt, q, t, y, u, b, d)

integer :: n, ny, m, nb, nd
real*8 :: dt, q(ny, n), t, y(ny, n), u(m), b(nb), d(ny, nd)

end subroutine
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Figure 8. Distribution of number of model years and Newton steps required for the computation of a annual cycle using 100 random
parameter samples (cf. Section 7.6).

Algorithm 4: PhiStep (ϕ)
Input : point in time: tj , time step: ∆t, implicit matrices: Aimp, explicit matrices: Aexp, current state: yin, parameters: u ∈ Rm,

boundary data: b, domain data: d
Output: next state: yout

1 q = BGCStep(tj ,∆t,yin,u,b,d) ;
2 yw = TransportStep(tj ,Aexp,yin) ;
3 yw = yw + q ;
4 yout = TransportStep(tj ,Aimp,yw) ;

Listing 1. Fortran 95 implementation of the coupling interface for biogeochemical models.
subroutine metos3dbgc(n, ny, m, nb, nd, dt, q, t, y, u, b, d)

integer :: n, ny, m, nb, nd
real*8 :: dt, q(ny, n), t, y(ny, n), u(m), b(nb), d(ny, nd)

end subroutine
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Figure 1. Land-sea mask (geometric data) of the used numerical model. Shown are the number
of layers per grip point. Note that the Arctic has been filled in.
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GMRES residual during solving (solid line in-between).
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Figure 3. Concentration of phosphate (yPO4
) at the first layer (0–50 m). Left: Shown is the

initial state (1 January, 00:00 a.m.) of the converged annual cycle presented in Fig. 2. Right:
Interpolated World Ocean Database observational data for the same point in time. The dashed
lines depict locations of slices shown in Fig. 4.
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Figure 4. Slices corresponding to Fig. 3: the Pacific (153.2815◦W), the Atlantic (29.53125◦W)
and the Indian (91.40625◦ E). Left: Simulated tracer concentration. Right: Observational data
from the World Ocean Database 2013.
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Figure 6. Ideal and actual speedup factor as well as efficiency of parallelized computations.
Here, best possible refers to the used load distribution introduced in Sect. 7.4.
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Figure 7. Number of model years and Newton steps required for the computation of the annual
cycle y(ud ) as a function of different convergence control parameters α and γ (cf. Eq. 6).
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of a annual cycle using 100 random parameter samples (cf. Sect. 7.6).
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Figure 9. Twin experiment using the spin-up solver. Bullets on the black line depict the steps
of the optimization process. The gray line shows all model evaluations including gradient com-
putation and line search step. The dashed line depicts a restart after 157 model evaluations.
Vertical limits of the figures are also parameter bounds (except cost function and second pa-
rameter).
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Figure 10. Twin experiment using the Newton solver. The black line depicts the steps taken
by the optmizer using a absolute finite difference step that equals to the square root of the
machine precision. The gray line refers to a relative finite difference step of 10−4. Intermediate
model evaluations are not shown here.

4451

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/4401/2015/gmdd-8-4401-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/4401/2015/gmdd-8-4401-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Marine ecosystem dynamics
	Transport matrices
	Biogeochemical model interface
	Periodic solution
	Spin-up
	Inexact Jacobian-free Newton--Krylov
	Convergence
	Spin-up
	Newton--Krylov


	Software implementation
	Layers
	Load balancing
	Interpolation
	Biogeochemical model step
	Transport step

	Results
	Setup
	Model
	Data

	Solver
	Profiling
	Speed-up
	Convergence control
	Parameter samples
	Twin experiment

	Conclusions
	Code availability

